繁簡切換您正在訪問的是FX168財經網,本網站所提供的內容及信息均遵守中華人民共和國香港特別行政區當地法律法規。

FX168财经网>人物频道>帖子

股息率实验

作者/用户24618566 2019-05-26 16:00 0 来源: FX168财经网人物频道

20170831,部分内容说明见高股息率策略

from jqdata import gta #import输入
import numpy as np #numpy 标准库
import pandas as pd #pandas 标准库
import datetime
import time

初始化方法,在整个回测、模拟实盘中最开始执行一次,用于初始一些全局变量

def initialize(context):

## 设置参数
set_benchmark('000300.XSHG')
run_monthly(Transfer, 1) 
# 按月回测,每月第一个交易日;Transfer传递,后面自定义的函数,本例是每天交易

## 设置中间变量
g.size_start = 1 #股息率从小到大排列,从g.size_start开始
g.size_end=10 #股息率从小到大排列,一直排列到g.size_end开始
#综合比较,10支较为合适
#g.months = [5,9] #交易运行的月份
g.months = [1,2,3,4,5,6,7,8,9,10,11,12] #交易运行的月份***最终选择***
g.stocks=[] #stocks 股票
g.div=3.5    #20170101-20170901,29.92%(回撤6.35%);27.08%(回撤6.35%);23.65%(回撤4.19%)
#20110501-20170901 每月调,g.div=2.5->182.15%;g.div=3->203.04%;g.div=3.5->217.74%,[5,9]222.14%
#20110501-20150101 每月调,g.div=2.5->60.32%;g.div=3->65.89%;g.div=3.5->81.33%,[5,9]85.61%
#20110501-20140501 每月调,g.div=2.5->-2.27%;g.div=3->1.41%;g.div=3.5->10.53%,[5,9]15.39%
#综合考虑,尤其是考虑2011-2014年情况,选g.div=3.5,每月调,按股息加权,不够10支保留相应现金。


#连续5年分红,连续6,7,8,9,10年R>15%,
g.security2010 = ['601699.XSHG','601666.XSHG','601166.XSHG','600997.XSHG','600970.XSHG','600519.XSHG','600508.XSHG','600348.XSHG','600309.XSHG','600276.XSHG','600150.XSHG','600123.XSHG','600067.XSHG','600066.XSHG','600048.XSHG','600036.XSHG','600000.XSHG','002081.XSHE','002065.XSHE','002022.XSHE','000983.XSHE','000937.XSHE','000933.XSHE','000895.XSHE','000869.XSHE','000726.XSHE','000550.XSHE','000538.XSHE','000069.XSHE','000022.XSHE']
g.security2011 = ['601939.XSHG','601899.XSHG','601699.XSHG','601666.XSHG','601169.XSHG','601166.XSHG','601088.XSHG','600970.XSHG','600845.XSHG','600582.XSHG','600519.XSHG','600508.XSHG','600348.XSHG','600309.XSHG','600276.XSHG','600123.XSHG','600067.XSHG','600066.XSHG','600048.XSHG','600036.XSHG','600016.XSHG','600000.XSHG','002204.XSHE','002142.XSHE','002128.XSHE','002081.XSHE','002065.XSHE','002024.XSHE','002022.XSHE','000983.XSHE','000937.XSHE','000869.XSHE','000726.XSHE','000651.XSHE','000550.XSHE','000538.XSHE','000069.XSHE','000022.XSHE']
g.security2012 = ['600519.XSHG','002236.XSHE','000651.XSHE','000869.XSHE','600309.XSHG','002081.XSHE','600066.XSHG','002128.XSHE','600582.XSHG','601166.XSHG','600016.XSHG','000538.XSHE','002022.XSHE','600036.XSHG','600067.XSHG','002252.XSHE','002244.XSHE','600276.XSHG','002065.XSHE','601939.XSHG','600048.XSHG','000069.XSHE','600123.XSHG','600000.XSHG','002142.XSHE','601088.XSHG','601899.XSHG','000550.XSHE','600845.XSHG','002250.XSHE','600348.XSHG','601169.XSHG','002242.XSHE','601699.XSHG','000937.XSHE','600970.XSHG']
g.security2013 = ['600519.XSHG','000651.XSHE','002236.XSHE','600309.XSHG','002081.XSHE','600067.XSHG','000538.XSHE','002022.XSHE','600066.XSHG','002065.XSHE','600016.XSHG','600036.XSHG','600048.XSHG','002063.XSHE','601166.XSHG','600000.XSHG','002244.XSHE','601939.XSHG','600276.XSHG','002142.XSHE','000069.XSHE','000550.XSHE','600582.XSHG','600845.XSHG','002250.XSHE','601169.XSHG','601088.XSHG','000869.XSHE','002242.XSHE']
g.security2014 = ['000651.XSHE','600519.XSHG','002081.XSHE','600066.XSHG','000538.XSHE','002022.XSHE','002236.XSHE','600309.XSHG','600048.XSHG','600276.XSHG','601166.XSHG','000550.XSHE','600000.XSHG','002065.XSHE','600016.XSHG','601939.XSHG','002142.XSHE','600036.XSHG','000069.XSHE','002250.XSHE','601169.XSHG','002242.XSHE']
g.security2015 = ['600519.XSHG','000651.XSHE','600066.XSHG','002081.XSHE','002236.XSHE','000538.XSHE','601166.XSHG','600276.XSHG','000550.XSHE','600036.XSHG','002242.XSHE','600000.XSHG','600048.XSHG','601939.XSHG','600016.XSHG','002065.XSHE','002250.XSHE','000069.XSHE','002142.XSHE','601169.XSHG','002304.XSHE','002294.XSHE','601877.XSHG','002152.XSHE','002146.XSHE','002153.XSHE','002293.XSHE','600511.XSHG','600271.XSHG','601398.XSHG']
g.security2016 = ['600066.XSHG','000651.XSHE','002236.XSHE','600519.XSHG','600276.XSHG','000538.XSHE','601166.XSHG','002081.XSHE','002142.XSHE','000069.XSHE','600000.XSHG','600036.XSHG','600048.XSHG','601939.XSHG','600016.XSHG','002294.XSHE','002304.XSHE','601877.XSHG','002146.XSHE','600271.XSHG','600511.XSHG','601398.XSHG','002415.XSHE','000848.XSHE','000423.XSHE','000540.XSHE','000887.XSHE','600436.XSHG','002262.XSHE']

## 设置回测条件
set_option('use_real_price', True)
#用真实价格交易 set_option - 设置其他项
# 过滤掉order系列API产生的比error级别低的log
log.set_level('order', 'error') 
#log.set_level 设定log级别。level: 字符串, 必须是’debug’, ‘info’, ‘warning’, ‘error’中的一个, 级别: debug < info < warning < error
# 股票类每笔交易时的手续费是:买入时佣金万分之三,卖出时万佣金分之三加千分之一印花税, 每笔交易佣金最低扣5块钱
set_order_cost(OrderCost(open_tax=0, close_tax=0.001, open_commission=0.0008,close_commission=0.0008, close_today_commission=0, min_commission=5), type='stock')

'''

每天开盘前

'''

每天开盘前要做的事情

def before_trading_start(context):
current_data = get_current_data() #获取当前时间数据

date = context.current_dt.date()
## 取初始(initia)数据
if date > datetime.date(2011,05,01):
    g.stocks = g.security2010
    if date > datetime.date(2012,05,01):
        g.stocks = g.security2011
        if date > datetime.date(2013,05,01):
            g.stocks = g.security2012
            if date > datetime.date(2014,05,01):
                g.stocks = g.security2013
                if date > datetime.date(2015,05,01):
                    g.stocks = g.security2014
                    if date > datetime.date(2016,05,01):
                        g.stocks = g.security2015
                        if date > datetime.date(2017,05,01):
                            g.stocks = g.security2016
initial_stocks=g.stocks

'''
##  设置可行股票池:过滤掉当日停牌的股票
paused_info = [] #paused 暂停
for i in initial_stocks:
    paused_info.append(current_data[i].paused)
df_paused_info = pd.DataFrame({'paused_info':paused_info},index = initial_stocks)
#pd pandas是python环境下最有名的数据统计包,而DataFrame翻译为数据框,是一种数据组织方式
#HTTP://jingyan.baidu.com/article/4b07be3c64483b48b280f35e.html
#可以使用字典{}来创建数据框
#'paused_info' 列的标识
#index 索引
g.stocks =list(df_paused_info.index[df_paused_info.paused_info == False])
'''

'''

每日交易时

'''

def Transfer(context):

#在指定月份(指定月份在g.months这一list中设定)卖卖股票
if context.current_dt.month in g.months: #如果当前月在指定月
    get_signal(context,g.stocks)

def get_signal(context,stocks):
year = context.current_dt.year-1

#将当前股票池转换为国泰安的6位股票池
stocks_symbol=[]
for s in stocks:
    stocks_symbol.append(s[0:6]) #append 添加

#如果知道前一年的分红,那么得到前一年的分红数据
#gta.run_query - 查询国泰安数据,返回一个pandas.DataFrame
df1 = gta.run_query(query(
        gta.STK_DIVIDEND.SYMBOL,#股票代码
        gta.STK_DIVIDEND.DIVIDENTBT,#股票分红
        gta.STK_DIVIDEND.DECLAREDATE#分红消息的时间
    ).filter(
        #filter 过滤
gta.STK_DIVIDEND.ISDIVIDEND == 'Y',#有分红的股票
        gta.STK_DIVIDEND.DIVDENDYEAR == year,
       #且分红信息在上一年度
        gta.STK_DIVIDEND.SYMBOL.in_(stocks_symbol)
    )).dropna(axis=0)
    #dropna(axis=0)选择删除带有缺失值的行,使用参数axis=0,
    #这是最常用的方法

stocks_symbol_this_year=list(df1['SYMBOL'])

#如果前一年的分红不知道,那么知道前两年的分红数据
df2 = gta.run_query(query(
    gta.STK_DIVIDEND.SYMBOL,#股票代码
    gta.STK_DIVIDEND.DIVIDENTBT,#股票分红
    gta.STK_DIVIDEND.DECLAREDATE#分红消息的时间
).filter(
    gta.STK_DIVIDEND.ISDIVIDEND == 'Y',#有分红的股票
    gta.STK_DIVIDEND.DIVDENDYEAR == year-1,
   #且分红信息在上一年度
    gta.STK_DIVIDEND.SYMBOL.in_(stocks_symbol),
    gta.STK_DIVIDEND.SYMBOL.notin_(stocks_symbol_this_year)
)).dropna(axis=0)

df= pd.concat((df2,df1))  #concat() 方法用于连接两个或多个数组

# 下面四行代码用于选择在当前时间内能已知去年股息信息的股票
df['pubtime'] = map(lambda x: 
int(x.split('-')[0] x.split('-')[1] x.split('-')[2]),df['DECLAREDATE'])#split切割
#map()是 Python 内置的高阶函数,它接收一个函数 f 和一个 list,
#并通过把函数 f 依次作用在 list 的每个元素上,得到一个新的 list 并返回。
#lambda x:f(X) 相当于x=f(x)函数
#上面两行就是在df增加pubtime列,值='DECLAREDATE'的数字形式
currenttime  = int(str(context.current_dt)[0:4] str(context.current_dt)[5:7] str(context.current_dt)[8:10])

# 筛选出pubtime小于当前时期的股票,然后剔除'DECLAREDATE','pubtime','SYMBOL'三列
# 并且将DIVIDENTBT 列转换为float
#df = df[(df.pubtime < currenttime)]


df['SYMBOL']=map(normalize_code,list(df['SYMBOL']))
df.index=list(df['SYMBOL'])

df=df.drop(['SYMBOL','pubtime','DECLAREDATE'],axis=1)

df['DIVIDENTBT'] = map(float, df['DIVIDENTBT'])

#接下来这一步是考虑多次分红的股票,因此需要累加股票的多次分红
#按照股票代码分堆
df = df.groupby(df.index).sum()

#得到当前股价
Price=history(1, unit='1d', field='close', security_list=list(df.index), df=True, skip_paused=False, fq='pre')
Price=Price.T
df['pre_close']=Price

#计算股息率 = 股息/股票价格
df['divpercent']=df['DIVIDENTBT']/df['pre_close']*10
df = df[(df.divpercent > g.div)]#取股息率大于
df=df.sort(columns=['divpercent'], axis=0, ascending=False)#将股息率排序,
#log.info(df)

df=df[g.size_start-1:g.size_end]#取指定几行数据

a=df.describe()
a_count=int(a.iat[0,0]) #第一行第一列
a_total=a.iat[0,0]*a.iat[1,2] #第一行第一列*第二行第三列 股息率求和
df['weight']=df['divpercent']/a_total*a_count/(g.size_end-g.size_start 1)

#log.info(a,df)

Buylist =list(df.index)[g.size_start-1:g.size_end]
#log.info(Buylist)
#return Buylist

#7 卖出股票
#def sell_the_stocks(context,Buylist):
#如果有持仓,就卖掉那些不在上面buylist中的股票
if len(context.portfolio.positions) != 0:#账户持仓
    for stock in context.portfolio.positions.keys():
        if stock not in Buylist:
            order_target(stock, 0)


#8 买入股票
value_sum=context.portfolio.portfolio_value#持仓价值 可用资金
# context.portfolio.available_cash
if  len(Buylist)>0:
    for i in range(0,a_count):
        stock=Buylist[i]
        value=value_sum*df.iat[i,3]
        order_target_value(stock,value)
        log.info(i,stock,value)
分享到:
举报财经168客户端下载

全部回复

0/140

投稿 您想发表你的观点和看法?

更多人气分析师

  • 李冉晴

    人气2096文章3821粉丝34

    李冉晴,专业现贷实盘分析师。

  • 张迎妤

    人气1752文章3305粉丝34

    个人专注于行情技术分析,消息面解读剖析,给予您第一时间方向...

  • 刘钥钥1

    人气1944文章3119粉丝34

    专业从事现货黄金、现货白银模似实盘操作分析指导

  • 梁孟梵

    人气1960文章3177粉丝39

    qq:2294906466 了解群指导添加微信mfmacd

  • 金帝财神

    人气4520文章8329粉丝117

    本文由资深分析师金帝财神微信:934295330,指导黄金,白银,...

  • 金泰铬J

    人气2160文章3925粉丝51

    投资问答解咨询金泰铬V/信tgtg67即可获取每日的实时资讯、行情...

  • 指导老师

    人气1752文章4423粉丝52

    暂无个人简介信息

  • 金算盘

    人气2520文章7761粉丝124

    高级分析师,混过名校,厮杀于股市和期货、证券市场多年,专注...

  • 张亦巧

    人气2024文章4145粉丝45

    暂无个人简介信息