繁簡切換您正在訪問的是FX168財經網,本網站所提供的內容及信息均遵守中華人民共和國香港特別行政區當地法律法規。

FX168财经网>人物频道>帖子

【共享函数】绘制回测或模拟交易的买卖点

作者/用户24618566 2019-09-18 21:36 0 来源: FX168财经网人物频道

注意: pyecharts本身存在bug , 如果绘图出现空白 , ctrl shift p 搜索 "信任notebook" ,点击信任 , 如果网页一直处于加载状态可以多刷新几次页面试试
还有问题的话可以重新建立一个notebook执行上述步骤


效果图:

Img

用于在研究中获取回测信息,并将买卖点绘制在K线图中, 使用了pyecharts库 , 动手能力强的小伙伴们可以自己使用返回的overlip添加技术指标等显示在图上

(1) 初始化, 获取回测信息

回测ID(backtestId):每个回测的唯一标识

TRADE_PLOT(ID = "回测ID")

初始化后将获得 trade_data 属性 , 是回测的所有交易记录详情

(2) 设置需要查看的标的(标的必须存在于交易列表中)

set_security('601866.XSHG' ,fq_date="last_day" ,forward_day=20  )

(3) 绘图

overlap = trade_plot.plot_base_bar()  #绘制K线图 
overlap

后续您也也可以自己添加副图或者主图指标到K线图中去 , 同时上传了py文件 plot_k.py , 可以直接上传到研究中 ,使用时 from plot_k import * 就可以直接调用了

注意: 如果绘图出现空白 , ctrl+shift+p 搜索 "信任notebook" ,点击信任 , 多刷新几次页面¶

还有问题的话可以重新建立一个notebook执行上述步骤¶

image.png

import pandas as pd
from jqdata import *
import talib
from pyecharts import * 
class TRADE_PLOT(object):
    def __init__(self,ID,security = None):
        online('https://cdn.bootcss.com/echarts/4.1.0.rc2')  #可能因为网络/pyecharts问题加载不出图像 , 网页没有加载的话可能需要多刷新几次
        self.ID = ID                  #回测ID
        self.security = security      #绘制K图的标的选择 
        self.trade_data = self.get_trade_info(self.ID,self.security)     #交易详情
        self.price_data = None
    def get_trade_info(self,ID,security):  
        '''获取交易数据'''
        data = pd.DataFrame(get_backtest(ID).get_orders())
        data['trade_date'] = pd.to_datetime(data.time).apply(lambda x : pd.to_datetime(x).date())
        return data
    def set_security(self , security,forward_day=20,fq_date="last_day"):
        """  设置需要查看的标的
        security = None ,  #需要查看的标的代码
        forward_day = 20 ,     #K线图第一次交易及最后一次交易前后回溯的交易日个数(剔除停牌)
        fq_date="last_day  #复权基准日, 默认K线的结束日期 ,其他可选参数详见API , get_bars"""
        self.security = security
        
        self.trade_data_security = self.trade_data[self.trade_data.security==security]
        if len(self.trade_data_security) ==0:
            print ('交易记录中没有该标的'.format(self.security))
        self.price_data = self.get_price_data(self.security,self.trade_data_security,forward_day,fq_date)
        
    def get_price_data(self,security,trade_data,forward_day,fq_date):
        '''获取价格数据'''
#         start_date= get_trade_days(end_date = trade_data.trade_date.iloc[0],count=forward_day)[0]
        last_date = trade_data.trade_date.iloc[-1] + datetime.timedelta(days = (forward_day*2 + 1))
        _after_days = get_trade_days(start_date=trade_data.trade_date.iloc[-1], end_date=last_date)
        end_date = _after_days[:forward_day][-1]
        day_range = get_trade_days( trade_data.trade_date.iloc[0] ,end_date)
        count = len(day_range)+forward_day

        if fq_date == 'last_day':
            fq_date = end_date
        p_df = pd.DataFrame(get_bars(security,end_dt=end_date,count=count,include_now=True,fq_ref_date=fq_date,
                                    fields=['date','open', 'high', 'low', 'close','volume'])).set_index('date')
#             get_price(security,end_date =end_date ,start_date= start_date ,fq=fq )
        return p_df
    def plot_base_bar(self):
        '''K线买卖点图'''
        security = self.security
        trade_data_security = self.trade_data_security
        price_data = self.price_data
        
        kline = Kline(get_security_info(security).display_name,)
        kline.add(security,price_data.index , price_data.loc[:,['open','close','low','high']].values,
                            is_datazoom_show=True,datazoom_range=[0,len(price_data)*2], datazoom_type= "both")
        kline._option['series'][0]['itemStyle']={'normal':{'color':'#ef232a', 'color0': '#14b143','borderColor': '#ef232a', 'borderColor0': '#14b143'}}

        es = EffectScatter("trade")
        buy_data = trade_data_security[trade_data_security.action== 'open']
        #symbol: 'circle', 'rect', 'roundRect', 'triangle', 'diamond', 'pin', 'arrow'
        es.add('buy',buy_data.trade_date , buy_data.price,symbol='triangle')#symbol_size=20,is_label_show=True)

        buy_data = trade_data_security[trade_data_security.action== 'close']
        es.add('sell',buy_data.trade_date , buy_data.price,symbol='diamond')#,is_label_show=True)
        es._option['series'][0]['itemStyle']={'normal':{'color':['#1d18ad']}}#, 'color0': '#140012'}}
        es._option['series'][1]['itemStyle']={'normal':{'color':['#140012']}}

        bar = Bar()
        bar.add("volume", price_data.index, price_data["volume"].values,is_datazoom_show=True,
                tooltip_tragger="axis", is_legend_show=True, is_yaxis_show=False, yaxis_max=10*(price_data["volume"].max()))        
                    
        es2 = EffectScatter("除权标识")
        factor = get_price(security,start_date=price_data.index[0],end_date=price_data.index[-1],
                           fields='factor',fq='post').factor.drop_duplicates(keep='first')[1:]
        factor.index = factor.index.date
#         print (factor)
        es2.add('除权标识',factor.index , factor.values ,is_datazoom_show=True,
                tooltip_tragger="axis", is_legend_show=True, is_yaxis_show=True, yaxis_max=factor.max()*10)
    
    
        overlap = Overlap(height=400,width=990)  
        overlap.add(kline)     #K线主图
        overlap.add(es2,yaxis_index=1, is_add_yaxis=True)  #除权标记
        overlap.add(es)       # 买卖点信息
        overlap.add(bar,yaxis_index=2, is_add_yaxis=True)   #成交量图
        
        return overlap

   
    def plot_m_k(self,end_date,count,unit='5m',fq_ref_date=None):
        '''绘制分钟/bar线图'''
        security = self.security
        price_data = pd.DataFrame(get_bars(security,end_dt=end_date,unit=unit,fq_ref_date=fq_ref_date,count=count,
                                         fields=['date','open','close','low','high','volume'],include_now=True)).set_index('date')
        kline = Kline(get_security_info(security).display_name+' {}线'.format(unit))
        kline.add(security,price_data.index , price_data.loc[:,['open','close','low','high']].values,
                  is_datazoom_show=True,datazoom_range=[0,len(price_data)], datazoom_type= "both")
        kline._option['series'][0]['itemStyle']={'normal':{'color':'#ef232a', 'color0': '#14b143','borderColor': '#ef232a', 'borderColor0': '#14b143'}}
        overlap = Overlap(height=400,width=990)

        bar = Bar()
        bar.add("volume", price_data.index, price_data["volume"].values,is_datazoom_show=True,
                tooltip_tragger="axis", is_legend_show=True, is_yaxis_show=False, yaxis_max=10*max(price_data["volume"]))

        overlap.add(kline)
        overlap.add(bar,yaxis_index=1, is_add_yaxis=True)
        return overlap

初始化, 获取回测信息¶

回测ID(backtestId):每个回测的唯一标识

初始化后将获得 trade_data 属性 , 是回测的所有交易记录详情

trade_plot = TRADE_PLOT(ID = "d3f8331cc9591c2d8d85cf2aaa348a23") #回测ID , backtestID
                 
trade_plot.trade_data  #全部交易详情 
# trade_plot.trade_data.groupby("security")['security'].count().sort_values(ascending=False)  #查看各个标的的交易次数 
.dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
action amount commission filled gains limit_price match_time price security security_name side status time type trade_date
0 open 8300 13.32 8300 0.0 0 2016-06-01 09:30:00 5.35 600350.XSHG 山东高速 long done 2016-06-01 09:30:00 market 2016-06-01
1 open 8500 13.39 8500 0.0 0 2016-06-01 09:30:00 5.25 600018.XSHG 上港集团 long done 2016-06-01 09:30:00 market 2016-06-01
2 open 6500 13.28 6500 0.0 0 2016-06-01 09:30:00 6.81 601158.XSHG 重庆水务 long done 2016-06-01 09:30:00 market 2016-06-01
3 open 6900 13.31 6900 0.0 0 2016-06-01 09:30:00 6.43 601699.XSHG 潞安环能 long done 2016-06-01 09:30:00 market 2016-06-01
4 open 7000 13.40 7000 0.0 0 2016-06-01 09:30:00 6.38 000540.XSHE 中天城投 long done 2016-06-01 09:30:00 market 2016-06-01
5 open 3500 13.11 3500 0.0 0 2016-06-01 09:30:00 12.49 000686.XSHE 东北证券 long done 2016-06-01 09:30:00 market 2016-06-01
6 open 600 11.76 600 0.0 0 2016-06-01 09:30:00 65.32 000963.XSHE 华东医药 long done 2016-06-01 09:30:00 market 2016-06-01
7 open 2000 12.85 2000 0.0 0 2016-06-01 09:30:00 21.41 000895.XSHE 双汇发展 long done 2016-06-01 09:30:00 market 2016-06-01
8 open 4900 13.42 4900 0.0 0 2016-06-01 09:30:00 9.13 600016.XSHG 民生银行 long done 2016-06-01 09:30:00 market 2016-06-01
9 open 8400 13.36 8400 0.0 0 2016-06-01 09:30:00 5.30 000937.XSHE 冀中能源 long done 2016-06-01 09:30:00 market 2016-06-01
10 open 2100 13.06 2100 0.0 0 2016-06-01 09:30:00 20.73 600703.XSHG 三安光电 long done 2016-06-01 09:30:00 market 2016-06-01
11 open 1800 13.08 1800 0.0 0 2016-06-01 09:30:00 24.23 601238.XSHG 广汽集团 long done 2016-06-01 09:30:00 market 2016-06-01
12 open 5000 13.40 5000 0.0 0 2016-06-01 09:30:00 8.93 600717.XSHG 天津港 long done 2016-06-01 09:30:00 market 2016-06-01
13 open 2400 12.98 2400 0.0 0 2016-06-01 09:30:00 18.03 601009.XSHG 南京银行 long done 2016-06-01 09:30:00 market 2016-06-01
14 open 10400 13.45 10400 0.0 0 2016-06-01 09:30:00 4.31 601866.XSHG 中海集运 long done 2016-06-01 09:30:00 market 2016-06-01
15 open 9200 13.36 9200 0.0 0 2016-06-01 09:30:00 4.84 600028.XSHG 中国石化 long done 2016-06-01 09:30:00 market 2016-06-01
16 open 2800 13.20 2800 0.0 0 2016-06-01 09:30:00 15.72 002500.XSHE 山西证券 long done 2016-06-01 09:30:00 market 2016-06-01
17 open 10800 13.41 10800 0.0 0 2016-06-01 09:30:00 4.14 600157.XSHG 永泰能源 long done 2016-06-01 09:30:00 market 2016-06-01
18 open 3000 13.36 3000 0.0 0 2016-06-01 09:30:00 14.84 002142.XSHE 宁波银行 long done 2016-06-01 09:30:00 market 2016-06-01
19 open 5200 13.24 5200 0.0 0 2016-06-01 09:30:00 8.49 600089.XSHG 特变电工 long done 2016-06-01 09:30:00 market 2016-06-01
20 open 800 12.01 800 0.0 0 2016-06-01 09:30:00 50.06 002007.XSHE 华兰生物 long done 2016-06-01 09:30:00 market 2016-06-01
21 open 1300 12.76 1300 0.0 0 2016-06-01 09:30:00 32.73 601318.XSHG 中国平安 long done 2016-06-01 09:30:00 market 2016-06-01
22 open 5200 13.23 5200 0.0 0 2016-06-01 09:30:00 8.48 601992.XSHG 金隅股份 long done 2016-06-01 09:30:00 market 2016-06-01
23 open 1100 12.38 1100 0.0 0 2016-06-01 09:30:00 37.53 002252.XSHE 上海莱士 long done 2016-06-01 09:30:00 market 2016-06-01
24 open 1700 13.06 1700 0.0 0 2016-06-01 09:30:00 25.60 300024.XSHE 机器人 long done 2016-06-01 09:30:00 market 2016-06-01
25 open 2900 13.18 2900 0.0 0 2016-06-01 09:30:00 15.15 600111.XSHG 北方稀土 long done 2016-06-01 09:30:00 market 2016-06-01
26 open 1700 12.72 1700 0.0 0 2016-06-01 09:30:00 24.95 600867.XSHG 通化东宝 long done 2016-06-01 09:30:00 market 2016-06-01
27 open 3500 13.37 3500 0.0 0 2016-06-01 09:30:00 12.73 601555.XSHG 东吴证券 long done 2016-06-01 09:30:00 market 2016-06-01
28 open 5500 13.36 5500 0.0 0 2016-06-01 09:30:00 8.10 600369.XSHG 西南证券 long done 2016-06-01 09:30:00 market 2016-06-01
29 open 10200 13.37 10200 0.0 0 2016-06-01 09:30:00 4.37 600578.XSHG 京能电力 long done 2016-06-01 09:30:00 market 2016-06-01
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
946 open 400 5.00 400 0.0 0 2016-06-30 09:30:00 32.65 002230.XSHE 科大讯飞 long done 2016-06-30 09:30:00 market 2016-06-30
947 open 1200 5.00 1200 0.0 0 2016-06-30 09:30:00 11.92 600153.XSHG 建发股份 long done 2016-06-30 09:30:00 market 2016-06-30
948 open 1400 5.00 1400 0.0 0 2016-06-30 09:30:00 10.35 600021.XSHG 上海电力 long done 2016-06-30 09:30:00 market 2016-06-30
949 open 3400 5.00 3400 0.0 0 2016-06-30 09:30:00 4.33 600578.XSHG 京能电力 long done 2016-06-30 09:30:00 market 2016-06-30
950 open 6500 5.00 6500 0.0 0 2016-06-30 09:30:00 2.31 000725.XSHE 京东方A long done 2016-06-30 09:30:00 market 2016-06-30
951 open 2100 5.00 2100 0.0 0 2016-06-30 09:30:00 6.95 600583.XSHG 海油工程 long done 2016-06-30 09:30:00 market 2016-06-30
952 open 1400 5.00 1400 0.0 0 2016-06-30 09:30:00 10.68 601800.XSHG 中国交建 long done 2016-06-30 09:30:00 market 2016-06-30
953 open 3800 5.00 3800 0.0 0 2016-06-30 09:30:00 3.90 601991.XSHG 大唐发电 long done 2016-06-30 09:30:00 market 2016-06-30
954 open 300 5.00 300 0.0 0 2016-06-30 09:30:00 40.67 601336.XSHG 新华保险 long done 2016-06-30 09:30:00 market 2016-06-30
955 open 200 5.00 200 0.0 0 2016-06-30 09:30:00 67.45 300017.XSHE 网宿科技 long done 2016-06-30 09:30:00 market 2016-06-30
956 open 800 5.00 800 0.0 0 2016-06-30 09:30:00 17.96 601607.XSHG 上海医药 long done 2016-06-30 09:30:00 market 2016-06-30
957 open 2300 5.00 2300 0.0 0 2016-06-30 09:30:00 6.47 601006.XSHG 大秦铁路 long done 2016-06-30 09:30:00 market 2016-06-30
958 open 1400 5.00 1400 0.0 0 2016-06-30 09:30:00 10.19 601186.XSHG 中国铁建 long done 2016-06-30 09:30:00 market 2016-06-30
959 open 800 5.00 800 0.0 0 2016-06-30 09:30:00 16.96 600816.XSHG 安信信托 long done 2016-06-30 09:30:00 market 2016-06-30
960 open 600 5.00 600 0.0 0 2016-06-30 09:30:00 24.07 600637.XSHG 东方明珠 long done 2016-06-30 09:30:00 market 2016-06-30
961 open 2700 5.00 2700 0.0 0 2016-06-30 09:30:00 5.51 601118.XSHG 海南橡胶 long done 2016-06-30 09:30:00 market 2016-06-30
962 open 2800 5.00 2800 0.0 0 2016-06-30 09:30:00 5.26 601106.XSHG 中国一重 long done 2016-06-30 09:30:00 market 2016-06-30
963 open 1600 5.00 1600 0.0 0 2016-06-30 09:30:00 9.34 600704.XSHG 物产中大 long done 2016-06-30 09:30:00 market 2016-06-30
964 open 1000 5.00 1000 0.0 0 2016-06-30 09:30:00 13.86 600959.XSHG 江苏有线 long done 2016-06-30 09:30:00 market 2016-06-30
965 open 2100 5.00 2100 0.0 0 2016-06-30 09:30:00 7.09 601390.XSHG 中国中铁 long done 2016-06-30 09:30:00 market 2016-06-30
966 open 800 5.00 800 0.0 0 2016-06-30 09:30:00 17.90 600485.XSHG 信威集团 long done 2016-06-30 09:30:00 market 2016-06-30
967 close 900 11.01 900 -144.0 0 2016-06-30 14:35:00 6.68 002146.XSHE 荣盛发展 long done 2016-06-30 14:35:00 market 2016-06-30
968 close 400 10.70 400 12.0 0 2016-06-30 14:35:00 14.24 001979.XSHE 招商蛇口 long done 2016-06-30 14:35:00 market 2016-06-30
969 close 9700 410.58 9700 679.0 0 2016-06-30 14:35:00 32.56 000858.XSHE 五粮液 long done 2016-06-30 14:35:00 market 2016-06-30
970 close 700 10.78 700 28.0 0 2016-06-30 14:35:00 8.25 600674.XSHG 川投能源 long done 2016-06-30 14:35:00 market 2016-06-30
971 close 600 9.99 600 -144.0 0 2016-06-30 14:35:00 8.31 000876.XSHE 新希望 long done 2016-06-30 14:35:00 market 2016-06-30
972 close 1000 10.86 1000 22.5 0 2016-06-30 14:35:00 5.86 600705.XSHG 中航资本 long done 2016-06-30 14:35:00 market 2016-06-30
973 close 300 10.10 300 -195.0 0 2016-06-30 14:35:00 17.01 002450.XSHE 康得新 long done 2016-06-30 14:35:00 market 2016-06-30
974 close 1000 14.37 1000 20.0 0 2016-06-30 14:35:00 9.37 601009.XSHG 南京银行 long done 2016-06-30 14:35:00 market 2016-06-30
975 close 1200 12.67 1200 -48.0 0 2016-06-30 14:35:00 6.39 000069.XSHE 华侨城A long done 2016-06-30 14:35:00 market 2016-06-30

976 rows × 15 columns

设定股票后可以获取的属性 :

  1. 当前标的交易记录 trade_data_security ;
  2. 前证券的行情数据 price_data

set_security(self , security,p_f_day=20,fq_date="last_day")

  1. security = None : 需要查看的标的代码
  2. forward_day = 20 : K线图第一次交易及最后一次交易前后回溯的交易日个数(剔除停牌)
  3. fq_date="last_day" : 复权基准日
    last_day : 以K线的结束日期为基准日 (和回测较为接近)
    None : 不复权
    具体日期 : 以某一天价格点位为参照物,进行的前复权或后复权。设置为datetime.datetime.now()即返回前复权数据 ; 更多关于动态复权解释)
"""  设置需要查看的标的
        security = None ,  #需要查看的标的代码
        p_f_day = 20 ,     #K线图第一次交易及最后一次交易前后回溯的交易日个数(剔除停牌)
        fq_date="last_day  #复权基准日, 默认K线的结束日期 ,其他可选参数详见API , get_bars"""
trade_plot.set_security('601866.XSHG' ,fq_date="last_day" ,forward_day=20  )    #设置需要查看的标的,复权基准日及K线回溯天数,None为不复权
        
# trade_plot.price_data                   #查看当前证券的行情数据
trade_plot.trade_data_security            #当前证券交易记录
.dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
action amount commission filled gains limit_price match_time price security security_name side status time type trade_date
14 open 10400 13.45 10400 0.0 0 2016-06-01 09:30:00 4.31 601866.XSHG 中海集运 long done 2016-06-01 09:30:00 market 2016-06-01
345 close 10400 55.43 10400 -2184.0 0 2016-06-13 14:35:00 4.10 601866.XSHG 中海集运 long done 2016-06-13 14:35:00 market 2016-06-13
overlap = trade_plot.plot_base_bar()  #绘制K线图 
overlap
require.config({ paths: { 'echarts': 'https://cdn.bootcss.com/echarts/4.1.0.rc2/echarts.min' } });
require(['echarts'], function(echarts) { var myChart_21948ca9ffe54c889d0ae39d6c9e9aaf = echarts.init(document.getElementById('21948ca9ffe54c889d0ae39d6c9e9aaf'), 'light', {renderer: 'canvas'}); function kline_tooltip_formatter(params) { var text; text = ((((((((((((params[0].seriesName + "<br/>") + "- open:") + params[0].data[1]) + "<br/>") + "- close:") + params[0].data[2]) + "<br/>") + "- lowest:") + params[0].data[3]) + "<br/>") + "- highest:") + params[0].data[4]); return text; } var option_21948ca9ffe54c889d0ae39d6c9e9aaf = { "title": [ { "text": "\u4e2d\u8fdc\u6d77\u53d1", "left": "auto", "top": "auto", "textStyle": { "fontSize": 18 }, "subtextStyle": { "fontSize": 12 } } ], "toolbox": { "show": true, "orient": "vertical", "left": "95%", "top": "center", "feature": { "saveAsImage": { "show": true, "title": "save as image" }, "restore": { "show": true, "title": "restore" }, "dataView": { "show": true, "title": "data view" } } }, "series_id": 5384594, "tooltip": { "trigger": "axis", "triggerOn": "mousemove|click", "axisPointer": { "type": "line" }, "formatter": kline_tooltip_formatter, "textStyle": { "fontSize": 14 }, "backgroundColor": "rgba(50,50,50,0.7)", "borderColor": "#333", "borderWidth": 0 }, "series": [ { "type": "candlestick", "name": "601866.XSHG", "data": [ [ 4.37, 4.51, 4.37, 4.51 ], [ 4.48, 4.55, 4.45, 4.62 ], [ 4.54, 4.51, 4.47, 4.55 ], [ 4.48, 4.34, 4.34, 4.52 ], [ 4.32, 4.12, 4.07, 4.32 ], [ 4.12, 4.53, 4.11, 4.53 ], [ 4.5, 4.44, 4.36, 4.62 ], [ 4.33, 4.3, 4.18, 4.39 ], [ 4.26, 4.25, 4.21, 4.37 ], [ 4.24, 4.29, 4.19, 4.37 ], [ 4.28, 4.22, 4.22, 4.3 ], [ 4.18, 4.09, 4.03, 4.19 ], [ 4.1, 4.09, 4.07, 4.15 ], [ 4.08, 4.15, 4.08, 4.27 ], [ 4.17, 4.24, 4.13, 4.35 ], [ 4.24, 4.16, 4.13, 4.24 ], [ 4.2, 4.15, 4.12, 4.22 ], [ 4.12, 4.16, 4.06, 4.17 ], [ 4.13, 4.19, 4.12, 4.28 ], [ 4.15, 4.18, 4.11, 4.24 ], [ 4.18, 4.33, 4.18, 4.4 ], [ 4.3, 4.32, 4.29, 4.44 ], [ 4.31, 4.33, 4.28, 4.35 ], [ 4.33, 4.33, 4.29, 4.38 ], [ 4.33, 4.3, 4.28, 4.36 ], [ 4.31, 4.26, 4.23, 4.32 ], [ 4.25, 4.27, 4.21, 4.39 ], [ 4.18, 4.05, 4.04, 4.2 ], [ 4.05, 4.07, 4.04, 4.14 ], [ 4.02, 4.12, 4.01, 4.15 ], [ 4.11, 4.08, 4.07, 4.17 ], [ 4.08, 4.09, 4.07, 4.15 ], [ 4.08, 4.06, 4.02, 4.11 ], [ 4.08, 4.02, 4.0, 4.09 ], [ 4.01, 4.03, 3.98, 4.03 ], [ 4.01, 3.98, 3.96, 4.02 ], [ 3.96, 3.89, 3.8, 3.99 ], [ 3.88, 3.94, 3.87, 3.94 ], [ 3.91, 3.94, 3.9, 4.01 ], [ 3.95, 3.99, 3.94, 4.06 ], [ 4.0, 3.96, 3.95, 4.0 ], [ 3.98, 3.97, 3.95, 4.01 ], [ 3.98, 4.04, 3.95, 4.06 ], [ 4.27, 4.17, 4.14, 4.44 ], [ 4.09, 4.12, 4.07, 4.14 ], [ 4.11, 4.15, 4.08, 4.26 ] ], "markPoint": { "data": [] }, "markLine": { "data": [] }, "seriesId": 5384594, "itemStyle": { "normal": { "color": "#ef232a", "color0": "#14b143", "borderColor": "#ef232a", "borderColor0": "#14b143" } } }, { "type": "effectScatter", "name": "\u9664\u6743\u6807\u8bc6", "showEffectOn": "render", "rippleEffect": { "brushType": "stroke", "scale": 2.5, "period": 4 }, "symbol": "circle", "symbolSize": 10, "data": [], "label": { "normal": { "show": false, "position": "top", "textStyle": { "fontSize": 12 } }, "emphasis": { "show": true, "textStyle": { "fontSize": 12 } } }, "seriesId": 5384594, "xAxisIndex": 0, "yAxisIndex": 1 }, { "type": "effectScatter", "name": "buy", "showEffectOn": "render", "rippleEffect": { "brushType": "stroke", "scale": 2.5, "period": 4 }, "symbol": "triangle", "symbolSize": 10, "data": [ [ "2016-06-01", 4.31 ] ], "label": { "normal": { "show": false, "position": "top", "textStyle": { "fontSize": 12 } }, "emphasis": { "show": true, "textStyle": { "fontSize": 12 } } }, "seriesId": 5384594, "itemStyle": { "normal": { "color": [ "#1d18ad" ] } }, "xAxisIndex": 0, "yAxisIndex": 0 }, { "type": "effectScatter", "name": "sell", "showEffectOn": "render", "rippleEffect": { "brushType": "stroke", "scale": 2.5, "period": 4 }, "symbol": "diamond", "symbolSize": 10, "data": [ [ "2016-06-13", 4.1 ] ], "label": { "normal": { "show": false, "position": "top", "textStyle": { "fontSize": 12 } }, "emphasis": { "show": true, "textStyle": { "fontSize": 12 } } }, "seriesId": 5384594, "itemStyle": { "normal": { "color": [ "#140012" ] } }, "xAxisIndex": 0, "yAxisIndex": 0 }, { "type": "bar", "name": "volume", "data": [ 32408207.0, 37804385.0, 23047567.0, 40750171.0, 36868027.0, 107768856.0, 99150772.0, 55042378.0, 37884805.0, 37597342.0, 29610866.0, 41230495.0, 25972929.0, 32142572.0, 46359104.0, 29588787.0, 18485331.0, 22624161.0, 34976069.0, 25198300.0, 67031730.0, 60090890.0, 34917977.0, 36064594.0, 25174086.0, 29284820.0, 55020370.0, 51900701.0, 31344079.0, 30845285.0, 27094080.0, 38268274.0, 34229155.0, 48409766.0, 42554531.0, 35517074.0, 50138488.0, 26935094.0, 49062865.0, 54301406.0, 27378108.0, 24856434.0, 55790406.0, 126709534.0, 50598213.0, 67992956.0 ], "barCategoryGap": "20%", "label": { "normal": { "show": false, "position": "top", "textStyle": { "fontSize": 12 } }, "emphasis": { "show": true, "textStyle": { "fontSize": 12 } } }, "markPoint": { "data": [] }, "markLine": { "data": [] }, "seriesId": 5384594, "xAxisIndex": 0, "yAxisIndex": 2 } ], "legend": [ { "data": [ "601866.XSHG", "\u9664\u6743\u6807\u8bc6", "buy", "sell", "volume" ], "selectedMode": "multiple", "show": true, "left": "center", "top": "top", "orient": "horizontal", "textStyle": { "fontSize": 12 } } ], "animation": true, "xAxis": [ { "show": true, "nameLocation": "middle", "nameGap": 25, "nameTextStyle": { "fontSize": 14 }, "axisTick": { "alignWithLabel": false }, "inverse": false, "boundaryGap": true, "type": "category", "splitLine": { "show": false }, "axisLine": { "lineStyle": { "width": 1 } }, "axisLabel": { "interval": "auto", "rotate": 0, "margin": 8, "textStyle": { "fontSize": 12 } }, "data": [ "2016-05-03", "2016-05-04", "2016-05-05", "2016-05-06", "2016-05-09", "2016-05-10", "2016-05-11", "2016-05-12", "2016-05-13", "2016-05-16", "2016-05-17", "2016-05-18", "2016-05-19", "2016-05-20", "2016-05-23", "2016-05-24", "2016-05-25", "2016-05-26", "2016-05-27", "2016-05-30", "2016-05-31", "2016-06-01", "2016-06-02", "2016-06-03", "2016-06-06", "2016-06-07", "2016-06-08", "2016-06-13", "2016-06-14", "2016-06-15", "2016-06-16", "2016-06-17", "2016-06-20", "2016-06-21", "2016-06-22", "2016-06-23", "2016-06-24", "2016-06-27", "2016-06-28", "2016-06-29", "2016-06-30", "2016-07-01", "2016-07-04", "2016-07-05", "2016-07-06", "2016-07-07" ], "scale": true } ], "yAxis": [ { "show": true, "nameLocation": "middle", "nameGap": 25, "nameTextStyle": { "fontSize": 14 }, "axisTick": { "alignWithLabel": false }, "inverse": false, "boundaryGap": true, "type": "value", "splitLine": { "show": true }, "axisLine": { "lineStyle": { "width": 1 } }, "axisLabel": { "interval": "auto", "formatter": "{value} ", "rotate": 0, "margin": 8, "textStyle": { "fontSize": 12 } }, "scale": true, "splitArea": { "show": true } }, { "show": true, "nameLocation": "middle", "nameGap": 25, "nameTextStyle": { "fontSize": 14 }, "axisTick": { "alignWithLabel": false }, "inverse": false, "boundaryGap": true, "max": NaN, "type": "value", "splitLine": { "show": true }, "axisLine": { "lineStyle": { "width": 1 } }, "axisLabel": { "interval": "auto", "formatter": "{value} ", "rotate": 0, "margin": 8, "textStyle": { "fontSize": 12 } } }, { "show": false, "nameLocation": "middle", "nameGap": 25, "nameTextStyle": { "fontSize": 14 }, "axisTick": { "alignWithLabel": false }, "inverse": false, "boundaryGap": true, "max": 1267095340.0, "type": "value", "splitLine": { "show": true }, "axisLine": { "lineStyle": { "width": 1 } }, "axisLabel": { "interval": "auto", "formatter": "{value} ", "rotate": 0, "margin": 8, "textStyle": { "fontSize": 12 } } } ], "color": [ "#c23531", "#2f4554", "#61a0a8", "#d48265", "#749f83", "#ca8622", "#bda29a", "#6e7074", "#546570", "#c4ccd3", "#f05b72", "#ef5b9c", "#f47920", "#905a3d", "#fab27b", "#2a5caa", "#444693", "#726930", "#b2d235", "#6d8346", "#ac6767", "#1d953f", "#6950a1", "#918597", "#f6f5ec" ], "dataZoom": [ { "show": true, "type": "slider", "start": 0, "end": 92, "orient": "horizontal" }, { "show": true, "type": "inside", "start": 0, "end": 92, "orient": "horizontal" } ] }; myChart_21948ca9ffe54c889d0ae39d6c9e9aaf.setOption(option_21948ca9ffe54c889d0ae39d6c9e9aaf); });

示例 : K线添加MA线¶

trade_plot.plot_base_bar() 返回一个pyecharts 的 overlap , 大家也可以按照需求增加各种指标或副图上去 ,下边以最简单的ma为例

需要注意 xaxis_index 需要和K线使用的索引数据类型(datetime.date)保持一致,否则无法显示

def plot_ma(data,short,long):
    ma_short= price_data.close.rolling(window=short).mean().round(2)
    ma_long =price_data.close.rolling(window=long).mean().round(2)
    line = Line()
    line.add("ma{}".format(short),ma_short.index, ma_short.values)
    line.add("ma{}".format(long),ma_long.index, ma_long.values)
    return line

trade_plot.set_security('002385.XSHE',forward_day  = 30,fq_date=None)   #变更标的,检查 fq_date 参数及除权标记是否生效
overlap2 = trade_plot.plot_base_bar() 
price_data = trade_plot.price_data
overlap2.add(plot_ma(price_data,5,10))   # 添加MA图
require.config({ paths: { 'echarts': 'https://cdn.bootcss.com/echarts/4.1.0.rc2/echarts.min' } });
require(['echarts'], function(echarts) { var myChart_962c362ca97a4c7680b1149c6dba2350 = echarts.init(document.getElementById('962c362ca97a4c7680b1149c6dba2350'), 'light', {renderer: 'canvas'}); function kline_tooltip_formatter(params) { var text; text = ((((((((((((params[0].seriesName + "<br/>") + "- open:") + params[0].data[1]) + "<br/>") + "- close:") + params[0].data[2]) + "<br/>") + "- lowest:") + params[0].data[3]) + "<br/>") + "- highest:") + params[0].data[4]); return text; } var option_962c362ca97a4c7680b1149c6dba2350 = { "title": [ { "text": "\u5927\u5317\u519c", "left": "auto", "top": "auto", "textStyle": { "fontSize": 18 }, "subtextStyle": { "fontSize": 12 } } ], "toolbox": { "show": true, "orient": "vertical", "left": "95%", "top": "center", "feature": { "saveAsImage": { "show": true, "title": "save as image" }, "restore": { "show": true, "title": "restore" }, "dataView": { "show": true, "title": "data view" } } }, "series_id": 630566, "tooltip": { "trigger": "axis", "triggerOn": "mousemove|click", "axisPointer": { "type": "line" }, "formatter": kline_tooltip_formatter, "textStyle": { "fontSize": 14 }, "backgroundColor": "rgba(50,50,50,0.7)", "borderColor": "#333", "borderWidth": 0 }, "series": [ { "type": "candlestick", "name": "002385.XSHE", "data": [ [ 11.19, 11.24, 11.01, 11.29 ], [ 11.32, 10.8, 10.56, 11.32 ], [ 10.78, 10.72, 10.7, 11.01 ], [ 10.73, 10.74, 10.65, 10.9 ], [ 10.8, 10.96, 10.78, 11.1 ], [ 10.97, 11.0, 10.88, 11.06 ], [ 11.04, 10.81, 10.8, 11.04 ], [ 10.8, 10.53, 10.3, 10.87 ], [ 10.42, 10.43, 10.36, 10.58 ], [ 10.44, 10.98, 10.4, 11.01 ], [ 10.93, 11.19, 10.9, 11.56 ], [ 11.22, 11.44, 11.2, 11.48 ], [ 11.65, 11.17, 11.13, 11.68 ], [ 11.11, 11.35, 10.8, 11.38 ], [ 11.25, 11.63, 11.06, 11.68 ], [ 7.8, 8.26, 7.77, 8.46 ], [ 8.02, 8.32, 7.93, 8.39 ], [ 8.22, 8.14, 8.1, 8.45 ], [ 8.15, 8.79, 8.15, 8.87 ], [ 8.77, 8.67, 8.6, 8.85 ], [ 8.62, 8.47, 8.25, 8.64 ], [ 8.3, 8.31, 8.28, 8.56 ], [ 8.31, 8.38, 8.18, 8.52 ], [ 8.39, 8.4, 8.29, 8.45 ], [ 8.39, 8.15, 8.08, 8.39 ], [ 8.2, 8.13, 8.07, 8.23 ], [ 8.11, 8.19, 7.98, 8.2 ], [ 8.16, 8.28, 8.05, 8.35 ], [ 8.25, 8.09, 8.06, 8.25 ], [ 8.12, 8.29, 8.09, 8.33 ], [ 8.36, 8.29, 8.25, 8.49 ], [ 8.32, 8.27, 8.18, 8.36 ], [ 8.28, 8.21, 8.05, 8.29 ], [ 8.13, 8.17, 8.05, 8.18 ], [ 8.2, 8.08, 8.05, 8.2 ], [ 8.07, 8.07, 8.04, 8.16 ], [ 8.05, 7.72, 7.72, 8.05 ], [ 7.68, 7.73, 7.62, 7.77 ], [ 7.62, 8.05, 7.57, 8.1 ], [ 8.02, 8.0, 7.94, 8.12 ], [ 8.0, 8.14, 7.98, 8.25 ], [ 8.15, 8.17, 8.12, 8.25 ], [ 8.17, 8.1, 8.07, 8.32 ], [ 8.13, 8.13, 8.03, 8.14 ], [ 8.1, 7.93, 7.9, 8.1 ], [ 7.93, 7.84, 7.65, 8.05 ], [ 7.79, 7.91, 7.61, 7.98 ], [ 7.84, 7.91, 7.79, 7.96 ], [ 7.92, 7.96, 7.91, 8.1 ], [ 7.93, 8.06, 7.93, 8.1 ], [ 8.11, 8.02, 8.01, 8.14 ], [ 7.99, 8.28, 7.97, 8.3 ], [ 8.28, 8.2, 8.15, 8.32 ], [ 8.2, 8.27, 8.16, 8.32 ], [ 8.26, 8.46, 8.21, 8.54 ], [ 8.36, 8.27, 8.25, 8.41 ], [ 8.27, 8.19, 8.18, 8.36 ], [ 8.19, 8.15, 8.1, 8.25 ], [ 8.18, 8.23, 8.14, 8.25 ], [ 8.39, 8.4, 8.33, 8.53 ], [ 8.35, 8.38, 8.3, 8.48 ], [ 8.38, 8.44, 8.33, 8.6 ], [ 8.45, 8.54, 8.4, 8.64 ], [ 8.54, 8.44, 8.41, 8.59 ], [ 8.46, 8.38, 8.35, 8.47 ], [ 8.35, 8.28, 8.25, 8.4 ], [ 8.27, 8.22, 8.16, 8.3 ], [ 8.23, 8.27, 8.2, 8.29 ], [ 8.25, 7.87, 7.77, 8.29 ], [ 7.9, 7.98, 7.85, 8.03 ], [ 8.0, 7.91, 7.88, 8.05 ], [ 7.91, 7.76, 7.7, 7.95 ], [ 7.78, 7.78, 7.76, 7.86 ], [ 7.79, 7.9, 7.78, 7.99 ], [ 7.96, 7.91, 7.85, 7.97 ] ], "markPoint": { "data": [] }, "markLine": { "data": [] }, "seriesId": 630566, "itemStyle": { "normal": { "color": "#ef232a", "color0": "#14b143", "borderColor": "#ef232a", "borderColor0": "#14b143" } } }, { "type": "effectScatter", "name": "\u9664\u6743\u6807\u8bc6", "showEffectOn": "render", "rippleEffect": { "brushType": "stroke", "scale": 2.5, "period": 4 }, "symbol": "circle", "symbolSize": 10, "data": [ [ "2016-05-11", 9.43 ] ], "label": { "normal": { "show": false, "position": "top", "textStyle": { "fontSize": 12 } }, "emphasis": { "show": true, "textStyle": { "fontSize": 12 } } }, "seriesId": 630566, "xAxisIndex": 0, "yAxisIndex": 1 }, { "type": "effectScatter", "name": "buy", "showEffectOn": "render", "rippleEffect": { "brushType": "stroke", "scale": 2.5, "period": 4 }, "symbol": "triangle", "symbolSize": 10, "data": [ [ "2016-06-02", 8.33 ], [ "2016-06-06", 8.14 ], [ "2016-06-22", 8.14 ] ], "label": { "normal": { "show": false, "position": "top", "textStyle": { "fontSize": 12 } }, "emphasis": { "show": true, "textStyle": { "fontSize": 12 } } }, "seriesId": 630566, "itemStyle": { "normal": { "color": [ "#1d18ad" ] } }, "xAxisIndex": 0, "yAxisIndex": 0 }, { "type": "effectScatter", "name": "sell", "showEffectOn": "render", "rippleEffect": { "brushType": "stroke", "scale": 2.5, "period": 4 }, "symbol": "diamond", "symbolSize": 10, "data": [ [ "2016-06-03", 8.19 ], [ "2016-06-08", 8.08 ], [ "2016-06-27", 7.91 ] ], "label": { "normal": { "show": false, "position": "top", "textStyle": { "fontSize": 12 } }, "emphasis": { "show": true, "textStyle": { "fontSize": 12 } } }, "seriesId": 630566, "itemStyle": { "normal": { "color": [ "#140012" ] } }, "xAxisIndex": 0, "yAxisIndex": 0 }, { "type": "bar", "name": "volume", "data": [ 16640528.0, 25292025.0, 13415442.0, 12379285.0, 22996246.0, 16903650.0, 14476970.0, 19046870.0, 12195551.0, 24005945.0, 32674096.0, 29999690.0, 22872906.0, 29032503.0, 37007317.0, 112801256.0, 61870223.0, 41085321.0, 76630059.0, 46212650.0, 30658347.0, 26432412.0, 20836464.0, 20004381.0, 27950880.0, 15071927.0, 17613273.0, 19427854.0, 18475336.0, 34887722.0, 30518367.0, 22165659.0, 32929373.0, 26189911.0, 21463386.0, 21999787.0, 29642894.0, 18072768.0, 33943785.0, 22650514.0, 25283820.0, 16937366.0, 23235583.0, 11686800.0, 16364142.0, 19664781.0, 23801973.0, 14177493.0, 17724379.0, 13212317.0, 9840445.0, 30461989.0, 17871491.0, 21455803.0, 40836794.0, 22464305.0, 21131500.0, 22672688.0, 16673558.0, 38703827.0, 21311542.0, 20572295.0, 28203695.0, 15008198.0, 11945708.0, 12056747.0, 14111716.0, 9720007.0, 26910203.0, 15578101.0, 7641726.0, 13733841.0, 8408027.0, 10880379.0, 5679282.0 ], "barCategoryGap": "20%", "label": { "normal": { "show": false, "position": "top", "textStyle": { "fontSize": 12 } }, "emphasis": { "show": true, "textStyle": { "fontSize": 12 } } }, "markPoint": { "data": [] }, "markLine": { "data": [] }, "seriesId": 630566, "xAxisIndex": 0, "yAxisIndex": 2 }, { "type": "line", "name": "ma5", "symbol": "emptyCircle", "symbolSize": 4, "smooth": false, "step": false, "showSymbol": true, "data": [ [ "2016-04-19", NaN ], [ "2016-04-20", NaN ], [ "2016-04-21", NaN ], [ "2016-04-22", NaN ], [ "2016-04-25", 10.89 ], [ "2016-04-26", 10.84 ], [ "2016-04-27", 10.85 ], [ "2016-04-28", 10.81 ], [ "2016-04-29", 10.75 ], [ "2016-05-03", 10.75 ], [ "2016-05-04", 10.79 ], [ "2016-05-05", 10.91 ], [ "2016-05-06", 11.04 ], [ "2016-05-09", 11.23 ], [ "2016-05-10", 11.36 ], [ "2016-05-11", 10.77 ], [ "2016-05-12", 10.15 ], [ "2016-05-13", 9.54 ], [ "2016-05-16", 9.03 ], [ "2016-05-17", 8.44 ], [ "2016-05-18", 8.48 ], [ "2016-05-19", 8.48 ], [ "2016-05-20", 8.52 ], [ "2016-05-23", 8.45 ], [ "2016-05-24", 8.34 ], [ "2016-05-25", 8.27 ], [ "2016-05-26", 8.25 ], [ "2016-05-27", 8.23 ], [ "2016-05-30", 8.17 ], [ "2016-05-31", 8.2 ], [ "2016-06-01", 8.23 ], [ "2016-06-02", 8.24 ], [ "2016-06-03", 8.23 ], [ "2016-06-06", 8.25 ], [ "2016-06-07", 8.2 ], [ "2016-06-08", 8.16 ], [ "2016-06-13", 8.05 ], [ "2016-06-14", 7.95 ], [ "2016-06-15", 7.93 ], [ "2016-06-16", 7.91 ], [ "2016-06-17", 7.93 ], [ "2016-06-20", 8.02 ], [ "2016-06-21", 8.09 ], [ "2016-06-22", 8.11 ], [ "2016-06-23", 8.09 ], [ "2016-06-24", 8.03 ], [ "2016-06-27", 7.98 ], [ "2016-06-28", 7.94 ], [ "2016-06-29", 7.91 ], [ "2016-06-30", 7.94 ], [ "2016-07-01", 7.97 ], [ "2016-07-04", 8.05 ], [ "2016-07-05", 8.1 ], [ "2016-07-06", 8.17 ], [ "2016-07-07", 8.25 ], [ "2016-07-08", 8.3 ], [ "2016-07-11", 8.28 ], [ "2016-07-12", 8.27 ], [ "2016-07-13", 8.26 ], [ "2016-07-14", 8.25 ], [ "2016-07-15", 8.27 ], [ "2016-07-18", 8.32 ], [ "2016-07-19", 8.4 ], [ "2016-07-20", 8.44 ], [ "2016-07-21", 8.44 ], [ "2016-07-22", 8.42 ], [ "2016-07-25", 8.37 ], [ "2016-07-26", 8.32 ], [ "2016-07-27", 8.2 ], [ "2016-07-28", 8.12 ], [ "2016-07-29", 8.05 ], [ "2016-08-01", 7.96 ], [ "2016-08-02", 7.86 ], [ "2016-08-03", 7.87 ], [ "2016-08-04", 7.85 ] ], "label": { "normal": { "show": false, "position": "top", "textStyle": { "fontSize": 12 } }, "emphasis": { "show": true, "textStyle": { "fontSize": 12 } } }, "lineStyle": { "normal": { "width": 1, "opacity": 1, "curveness": 0, "type": "solid" } }, "areaStyle": { "opacity": 0 }, "markPoint": { "data": [] }, "markLine": { "data": [] }, "seriesId": 630566, "xAxisIndex": 0, "yAxisIndex": 0 }, { "type": "line", "name": "ma10", "symbol": "emptyCircle", "symbolSize": 4, "smooth": false, "step": false, "showSymbol": true, "data": [ [ "2016-04-19", NaN ], [ "2016-04-20", NaN ], [ "2016-04-21", NaN ], [ "2016-04-22", NaN ], [ "2016-04-25", NaN ], [ "2016-04-26", NaN ], [ "2016-04-27", NaN ], [ "2016-04-28", NaN ], [ "2016-04-29", NaN ], [ "2016-05-03", 10.82 ], [ "2016-05-04", 10.82 ], [ "2016-05-05", 10.88 ], [ "2016-05-06", 10.93 ], [ "2016-05-09", 10.99 ], [ "2016-05-10", 11.05 ], [ "2016-05-11", 10.78 ], [ "2016-05-12", 10.53 ], [ "2016-05-13", 10.29 ], [ "2016-05-16", 10.13 ], [ "2016-05-17", 9.9 ], [ "2016-05-18", 9.62 ], [ "2016-05-19", 9.31 ], [ "2016-05-20", 9.03 ], [ "2016-05-23", 8.74 ], [ "2016-05-24", 8.39 ], [ "2016-05-25", 8.38 ], [ "2016-05-26", 8.36 ], [ "2016-05-27", 8.38 ], [ "2016-05-30", 8.31 ], [ "2016-05-31", 8.27 ], [ "2016-06-01", 8.25 ], [ "2016-06-02", 8.25 ], [ "2016-06-03", 8.23 ], [ "2016-06-06", 8.21 ], [ "2016-06-07", 8.2 ], [ "2016-06-08", 8.19 ], [ "2016-06-13", 8.15 ], [ "2016-06-14", 8.09 ], [ "2016-06-15", 8.09 ], [ "2016-06-16", 8.06 ], [ "2016-06-17", 8.04 ], [ "2016-06-20", 8.03 ], [ "2016-06-21", 8.02 ], [ "2016-06-22", 8.02 ], [ "2016-06-23", 8.0 ], [ "2016-06-24", 7.98 ], [ "2016-06-27", 8.0 ], [ "2016-06-28", 8.02 ], [ "2016-06-29", 8.01 ], [ "2016-06-30", 8.01 ], [ "2016-07-01", 8.0 ], [ "2016-07-04", 8.01 ], [ "2016-07-05", 8.02 ], [ "2016-07-06", 8.04 ], [ "2016-07-07", 8.09 ], [ "2016-07-08", 8.13 ], [ "2016-07-11", 8.16 ], [ "2016-07-12", 8.19 ], [ "2016-07-13", 8.21 ], [ "2016-07-14", 8.25 ], [ "2016-07-15", 8.28 ], [ "2016-07-18", 8.3 ], [ "2016-07-19", 8.33 ], [ "2016-07-20", 8.35 ], [ "2016-07-21", 8.34 ], [ "2016-07-22", 8.34 ], [ "2016-07-25", 8.35 ], [ "2016-07-26", 8.36 ], [ "2016-07-27", 8.32 ], [ "2016-07-28", 8.28 ], [ "2016-07-29", 8.23 ], [ "2016-08-01", 8.16 ], [ "2016-08-02", 8.09 ], [ "2016-08-03", 8.04 ], [ "2016-08-04", 7.99 ] ], "label": { "normal": { "show": false, "position": "top", "textStyle": { "fontSize": 12 } }, "emphasis": { "show": true, "textStyle": { "fontSize": 12 } } }, "lineStyle": { "normal": { "width": 1, "opacity": 1, "curveness": 0, "type": "solid" } }, "areaStyle": { "opacity": 0 }, "markPoint": { "data": [] }, "markLine": { "data": [] }, "seriesId": 630566, "xAxisIndex": 0, "yAxisIndex": 0 } ], "legend": [ { "data": [ "002385.XSHE", "\u9664\u6743\u6807\u8bc6", "buy", "sell", "volume", "ma5", "ma10" ], "selectedMode": "multiple", "show": true, "left": "center", "top": "top", "orient": "horizontal", "textStyle": { "fontSize": 12 } } ], "animation": true, "xAxis": [ { "show": true, "nameLocation": "middle", "nameGap": 25, "nameTextStyle": { "fontSize": 14 }, "axisTick": { "alignWithLabel": false }, "inverse": false, "boundaryGap": true, "type": "category", "splitLine": { "show": false }, "axisLine": { "lineStyle": { "width": 1 } }, "axisLabel": { "interval": "auto", "rotate": 0, "margin": 8, "textStyle": { "fontSize": 12 } }, "data": [ "2016-04-19", "2016-04-20", "2016-04-21", "2016-04-22", "2016-04-25", "2016-04-26", "2016-04-27", "2016-04-28", "2016-04-29", "2016-05-03", "2016-05-04", "2016-05-05", "2016-05-06", "2016-05-09", "2016-05-10", "2016-05-11", "2016-05-12", "2016-05-13", "2016-05-16", "2016-05-17", "2016-05-18", "2016-05-19", "2016-05-20", "2016-05-23", "2016-05-24", "2016-05-25", "2016-05-26", "2016-05-27", "2016-05-30", "2016-05-31", "2016-06-01", "2016-06-02", "2016-06-03", "2016-06-06", "2016-06-07", "2016-06-08", "2016-06-13", "2016-06-14", "2016-06-15", "2016-06-16", "2016-06-17", "2016-06-20", "2016-06-21", "2016-06-22", "2016-06-23", "2016-06-24", "2016-06-27", "2016-06-28", "2016-06-29", "2016-06-30", "2016-07-01", "2016-07-04", "2016-07-05", "2016-07-06", "2016-07-07", "2016-07-08", "2016-07-11", "2016-07-12", "2016-07-13", "2016-07-14", "2016-07-15", "2016-07-18", "2016-07-19", "2016-07-20", "2016-07-21", "2016-07-22", "2016-07-25", "2016-07-26", "2016-07-27", "2016-07-28", "2016-07-29", "2016-08-01", "2016-08-02", "2016-08-03", "2016-08-04" ], "scale": true } ], "yAxis": [ { "show": true, "nameLocation": "middle", "nameGap": 25, "nameTextStyle": { "fontSize": 14 }, "axisTick": { "alignWithLabel": false }, "inverse": false, "boundaryGap": true, "type": "value", "splitLine": { "show": true }, "axisLine": { "lineStyle": { "width": 1 } }, "axisLabel": { "interval": "auto", "formatter": "{value} ", "rotate": 0, "margin": 8, "textStyle": { "fontSize": 12 } }, "scale": true, "splitArea": { "show": true } }, { "show": true, "nameLocation": "middle", "nameGap": 25, "nameTextStyle": { "fontSize": 14 }, "axisTick": { "alignWithLabel": false }, "inverse": false, "boundaryGap": true, "max": 94.3, "type": "value", "splitLine": { "show": true }, "axisLine": { "lineStyle": { "width": 1 } }, "axisLabel": { "interval": "auto", "formatter": "{value} ", "rotate": 0, "margin": 8, "textStyle": { "fontSize": 12 } } }, { "show": false, "nameLocation": "middle", "nameGap": 25, "nameTextStyle": { "fontSize": 14 }, "axisTick": { "alignWithLabel": false }, "inverse": false, "boundaryGap": true, "max": 1128012560.0, "type": "value", "splitLine": { "show": true }, "axisLine": { "lineStyle": { "width": 1 } }, "axisLabel": { "interval": "auto", "formatter": "{value} ", "rotate": 0, "margin": 8, "textStyle": { "fontSize": 12 } } } ], "color": [ "#c23531", "#2f4554", "#61a0a8", "#d48265", "#749f83", "#ca8622", "#bda29a", "#6e7074", "#546570", "#c4ccd3", "#f05b72", "#ef5b9c", "#f47920", "#905a3d", "#fab27b", "#2a5caa", "#444693", "#726930", "#b2d235", "#6d8346", "#ac6767", "#1d953f", "#6950a1", "#918597", "#f6f5ec" ], "dataZoom": [ { "show": true, "type": "slider", "start": 0, "end": 150, "orient": "horizontal" }, { "show": true, "type": "inside", "start": 0, "end": 150, "orient": "horizontal" } ] }; myChart_962c362ca97a4c7680b1149c6dba2350.setOption(option_962c362ca97a4c7680b1149c6dba2350); });
 
分享到:
举报财经168客户端下载

全部回复

0/140

投稿 您想发表你的观点和看法?

更多人气分析师

  • 李冉晴

    人气2096文章3821粉丝34

    李冉晴,专业现贷实盘分析师。

  • 张迎妤

    人气1752文章3305粉丝34

    个人专注于行情技术分析,消息面解读剖析,给予您第一时间方向...

  • 刘钥钥1

    人气1944文章3119粉丝34

    专业从事现货黄金、现货白银模似实盘操作分析指导

  • 梁孟梵

    人气1960文章3177粉丝39

    qq:2294906466 了解群指导添加微信mfmacd

  • 金帝财神

    人气4520文章8329粉丝117

    本文由资深分析师金帝财神微信:934295330,指导黄金,白银,...

  • 金泰铬J

    人气2160文章3925粉丝51

    投资问答解咨询金泰铬V/信tgtg67即可获取每日的实时资讯、行情...

  • 指导老师

    人气1752文章4423粉丝52

    暂无个人简介信息

  • 金算盘

    人气2520文章7761粉丝124

    高级分析师,混过名校,厮杀于股市和期货、证券市场多年,专注...

  • 张亦巧

    人气2024文章4145粉丝45

    暂无个人简介信息